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A fullerene graph is a three-regular and three-connected plane graph exactly 12 faces
of which are pentagons and the remaining faces are hexagons. Let Fn be a fullerene
graph with n vertices. The Clar number c(Fn) of Fn is the maximum size of sextet pat-
terns, the sets of disjoint hexagons which are all M-alternating for a perfect match-
ing (or Kekulé structure) M of Fn . A sharp upper bound of Clar number for any
fullerene graphs is obtained in this article: c(Fn) � � n−12

6 �. Two famous members of
fullerenes C60 (Buckministerfullerene) and C70 achieve this upper bound. There exist
infinitely many fullerene graphs achieving this upper bound among zigzag and armchair
carbon nanotubes.

KEY WORDS: fullerene graph, carbon nanotube, Clar number, sextet pattern, Clar
formula, perfect matching, Kekulé structure

1. Introduction

Fullerenes are carbon-cage molecules exclusively consisting of carbon atoms
arranged on a sphere with 12 five-membered faces and other six-membered faces.
The icosahedral C60 molecule, Buckministerfullerene, proposed firstly by Kroto
et al. [1] and confirmed by later experiments [2,3], is the archetype of fullerenes.
A fullerene graph as a molecular graph of a fullerene is a three-regular and three-
connected plane graph where exactly 12 faces are pentagons and remaining faces
are hexagons. It is well known that fullerene graphs Fn with n vertices exist for
all n � 20, expect for n = 22 [4]. For construction and enumeration of fullerene
isomers, readers may refer to [4,5].

Let G be a plane graph. A perfect matching (or Kekulé structure) M of G is
a set of pairwise disjoint edges of G such that every vertex of G is incident with
an edge in M . A cycle of G is M-alternating if its edges appear alternately in and
off M . A set H of disjoint face-boundaries of G that are even cycles is called

∗Corresponding author.

123

0259-9791/07/0200-0123/0 © 2006 Springer Science+Business Media, Inc.



124 H. Zhang and D. Ye / An upper bound for the Clar number

a resonant pattern if G has a perfect matching M such that all cycles in H are
M-alternating. Equivalently, G–H has a perfect matching, where G–H denotes
the subgraph obtained from G by deleting the vertices in H together with their
incident edges. A sextet pattern is a special types of resonant pattern that only
consists of hexagons. In Clar’s modes [6], a sextet pattern is denoted by those
cycles depicted within such hexagons and the remainder is placed a perfect
matching designated by the double bonds; for example, a sextet pattern of F24 is
illustrated in figure 3 (right). For benzenoid systems or fullerene graphs G, the
Clar number of G, denote by c(G), is the maximum size of all sextet patterns
of G; Clar formula always means a sextet pattern with the maximum number of
hexagons.

The concept of resonant pattern originates from Clar’s aromatic theory [6]:
within benzenoid hydrocarbon isomers, one with larger Clar number is more sta-
ble. Some upper bounds for the Clar number of benzenoid hydrocarbons, were
given by Hansen and Zheng [7]. An integer linear programming was proposed
by the same authors [8] to compute the Clar number of benzenoid hydrocar-
bons. Abeledo and Atkinson [9] showed that relaxing the integer-restrictions in
such a programme always yields an integral solution, accordingly settled a cor-
responding conjecture in [8]. For other researches on the Clar number of benze-
noid hydrocarbons, see [10–15].

Recently, Zhang and Wang [16] investigated sextet patterns of open-end car-
bon nanotubes or tubule. For Buckministerfullerene (C60), El-Basil [17] found
that c(C60) = 8 and C60 has exactly 5 Clar formulas; Further, Shiu et al. [18]
obtained Clar and sextet polynomials. For any fullerene graphs Zhang and He
[19] obtained that the sextet pattern count is no larger than the Kekulé structure
count.

In this paper, we obtain an upper bound for the Clar number of fullerene
graphs Fn, which is described in the following main theorem.

Theorem 1. c(Fn) � �n−12
6 �.

In the next section we will give a rigorous proof to this theorem. In the last
section we show that there are infinitely many fullerene graphs which can achieve
this upper bound, including C60 and C70, and zigzag and armchair carbon
nanotubes as well. By the way, theorem 1 shows that none of fullerene graphs
is “fully benzenoid” [20].

2. Proof of theorem 1

To prove the theorem, we now introduce some useful notions. Let G be any
graph with the vertex-set V (G) and edge-set E(G). For a subgraph or a set of
vertices S of G, we say S meets a subgraph G ′ of G if S ∩ G ′ �= ∅, and let
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Figure 1. A half part B of dodecahedron and illustration for the proof of lemma 1.

G–S denote the subgraph obtained from G by deleting the vertices in S together
with their incident edges. For a 2-connected plane graph G, each face of G is
bounded by a cycle. For convenience, a face is often represented by its bound-
ary if unconfused. For example, an edge uv meeting a face f always means
{u, v} ∩ f �= ∅; and a face f of G adjoins a subgraph G ′ of G if f is not a
face of G ′ and f has an edge in common with G ′. Further, the boundary of G
always means the boundary of its infinite face.

For any fullerene graph F , any pentagon, a cycle with length 5, of F must
bound a face since F is three-connected; any hexagon, a cycle with length 6, of
F also bounds a face since F is cyclically 5-edge connected [21].

In what follows we always denote by F any given fullerene graph and by H
any given Clar formula of F . Let UH := V (F) − V (H) be the set of vertices of
F that are not included in hexagons of H.

Let B be the half part of dodecahedron as shown in figure 1. Then B is
a plane graph with 15 vertices and 6 pentagons, where the 5 pentagons adjoin
the central pentagon. Our proof to theorem 1 entirely relys on the following two
crucial lemmas.

Lemma 1. If a fullerene graph F contains B as its subgraph, then |V (B) ∩
UH| � 12.

Proof. If a hexagon h in H adjoins B, the intersection h ∩ B is a path of
length 2 along the boundary of B and its end-vertices are of degree 2 in B. So,
among all faces of F adjoining B at most two belong to H since the faces in H
are pairwise disjoint hexagons. If there are precisely two faces of them in H, let
u, v and w be the three 3-degree vertices of B which lie on the boundary of B
and which are not included in H such that both u and v are adjacent to a ver-
tex of degree 2 in B (see figure 1). Then w is a vertex of degree one in B–H.
From this we can show that one of u and v would not be matched by any per-
fect matching of F–H, which contradicts that H is a sextet pattern of F . So at
most 3 vertices of B are included in H, and |V (B) ∩ UH| � 15 − 3 = 12.
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Figure 2. The subgraph G1.

Lemma 2. If a subgraph G of a fullerene graph F has at least k pentagons, then
|V (G) ∩ UH| � k.

Proof. Let G be a subgraph of F with at least k pentagons. Since F has exactly
12 pentagons, k � 12. If G contains B, lemma 1 implies the assertion. So, from
now on we suppose that G contains no B. We prove this lemma by induction on
k. If k = 1, we have |V (G) ∩ UH| � 1 since a pentagon has at least one vertex
that cannot be included in any sextet pattern of F . So suppose k � 2 and the
lemma holds for smaller k.

If UH has a non-empty subset S that is contained in V (G) such that S
meets at most |S| pentagons of G, then G − S will have at least k − |S| pen-
tagons. By induction hypothesis we have that |V (G − S) ∩ UH| � k − |S|. Since
S ⊆ V (G)∩UH, |V (G)∩UH| � k and the lemma holds. So it is sufficient to show
the existence of such an S.

(∗) Suppose, on the contrary, that there is no ∅ �= S ⊆ V (G) ∩ UH such that
S meets at most |S| pentagons of G.

Let M be a perfect matching of F–H. Then M �= ∅ covers precisely all ver-
tices in UH. There exists an edge e = v1v2 ∈ M meeting G since G has k � 2
pentagons and any pentagon contains at least one vertex in UH; let ψe denote
the number of pentagons of G met by e. We claim that 3 � ψe � 4 for any such
edge e: If ψe � 2, S := {v1, v2}∩ V (G) meets ψe pentagons of G, a contradiction
follows; ψe � 4 holds since F is three-regular. Further, every edge in M meeting
G must belong to G. In the following there are two cases to be considered.
Case 1. There exists an edge e = v1v2 ∈ M ∩ E(G) with ψe = 4. Then G
contains a subgraph G1 consisting of 4 pentagons g1, g2, f1 and f2, meeting
the same edge v1v2 (see figure 2). The faces adjoining G1 in F are denoted by
h1, f6, g6, h2, g3 and f3, which are illustrated in figure 2. Clearly, {h1, f3} �⊆ H,
and {h2, g6} �⊆ H. If {h1, f3} ∩ H = ∅, S := V ( f2) ⊆ UH meets at most 5
pentagons of G since G contains no B as its subgraph. This contradicts the
above supposition (∗). Hence H contains exactly one of h1 and f3, and exactly
one of h2 and g6 in a similar manner.
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Figure 3. Illustration for case 1.

If { f3, h2} ⊆ H, then {h1, g6} ∩ H = ∅. Since B � G, f1 adjoins at most
4 pentagons of G. Then S := V ( f1) ⊆ UH meets at most 5 pentagons of G.
This also contradicts supposition (∗). For the case that {h1, g6} ⊆ H, a similar
contradiction happens.

So the remaining case is either {h1, h2} ⊆ H or { f3, g6} ⊆ H. With-
out loss of generality, we suppose that h1, h2 ∈ H, considering their symmetry.
The faces adjoining h1 in F are enumerated clockwise as f1, f2, . . . , f6, and the
faces adjoining h2 in F are enumerated counterclockwise as g1, g2, . . . , g6 (see
figure 3). As denoted in figures 2 and 3, v11v12 is the common edge of f1 and
g6, and v3v4 the common edge of f3 and g2. Then v11v12 ∈ M and v3v4 ∈ M .
Further, f3 ∩ g3 = v4v5.

Let P2i := v11v12v1v2v3v4 · · · v2i−1v2i be a path with 2i + 2 vertices. Obvi-
ously P4 is an M-alternating path in G1 and V (P4) ⊆ UH. Then at least three
of f3, g3, f6 and g6 are pentagons of G: otherwise S := V (P4) meets at most
6 pentagons of G, a contradiction. By the symmetry, without loss of generality
we suppose that both f3 and g3 are pentagons of G. So f4 and g3 have an edge
v5v6 in common, and v5v6 ∈ M . Further, f4 ∩ g4 = v6v7. Hence P6 is an M-
alternating path in G and V (P6) ⊆ UH. By the same reason we have that at least
3 faces in f4, g4, f6 and g6 are pentagons of G. By the symmetry we may sup-
pose that f4 and g4 are pentagons of G (see figure 3 (left)). Then v7v8 := f5 ∩
g4 is an edge in M . Let v8v9 be an edge of f5 and g5 in common. Similarly we
may suppose that both f5 and g5 are pentagons of G (see figure 3 (right)). Then
f6 and g5 have an edge v9v10 in common and v9v10 ∈ M . Then P10 is an M-
alternating path in G both end-edges of which belong to M and V (P10) ⊆ H.
Obviously S := V (P10) meets at most 12 pentagons since F contains precisely
12 pentagons. This contradicts supposition (∗).

Case 2. ψe = 3 for any e = v1v2 ∈ M ∩ E(G). Then the 3 pentagons, g1, g2 and
g3, met by v1v2 may form two distinct subgraphs G2 and G3 of G such that for
G2, only g2 contains v1v2, but for G3 both g1 and g2 contain v1v2 (see figure 4).
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Figure 4. Illustration for case 2.

Subcase 2.1. G2 ⊆ G. Let f1, f2 denote the faces outside G2 that adjoin g2 in F
(see G2 in figure 4). Then f1 and f2 have an edge in common and { f1, f2} � H.
It follows that precisely one of f1 and f2 belongs to H; Otherwise S := V (g2) ⊆
UH meets at most 5 pentagons of G (possible g1, g2, g3, f1, f2), which contra-
dicts supposition (∗). Without loss of generality, let f1 ∈ H. Then v3v4 :=
f2 ∩ g3 is an edge. Further, v3v4 ∈ M and ψv3v4 = 3 (Case 2). Hence S :=
{v1, v2, v3, v4} ⊆ UH meets precisely 4 pentagons of G, a contradiction to sup-
position (∗).

Subcase 2.2. G3 ⊆ G, but G2 � G. The faces adjoining g1, g2 but not g3 are
denoted by f1, f and f2 (see G3 in figure 4). If both of f1 and f2 are in H, then
V (g3) ⊆ UH. Since B � G, S := V (g3) meets at most 5 pentagons of G, a con-
tradiction. So, without loss of generality let f1 /∈ H. Let u be the vertex meeting
g1, f1 and f . Then u ∈ UH. Let uv := f1 ∩ f and uv′ := f1 ∩ g1. Then uv′ ∈ M ;
otherwise, uv ∈ M . Since ψuv = 3 and f is not a pentagon of G,G2 appears in
G, contradicting this subcase (see G ′

3 in figure 4). So suppose uv′ ∈ M . Further,
let S := V (g1) ⊆ UH. Since f is not a pentagon of G, S meets at most five pen-
tagons of G. This contradicts supposition (∗) and completes the entire proof of
the lemma.

Proof of theorem 1. Let G := Fn. Since Fn has exactly 12 pentagons, by lemma
2 we have |UH| � 12. By UH = V (Fn) − V (H), we have |V (H)| = |V (Fn)| −
|UH| � n − 12. On the other hand, |V (H)| = 6c(Fn) and c(Fn) is an integer. So
we have c(Fn) � �n−12

6 � and the main theorem is proved.

3. Sharpness for the upper bound

In this section we will show there exist infinitely many fullerenes whose Clar
numbers attain the upper bound in Theorem 1. Two famous members of fulle-
renes C60 and C70 synthesized in experiments [4] are such fullerenes: Sextet pat-
terns of C60 and C70 in figure 5 are their Clar formulas by theorem 1. Hence
c(C60) = 8 and c(C70) = 9. Further, infinitely many examples of such fullerenes
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Figure 5. Clar formulas of C60 (left) and C70 (right).

Figure 6. The unrolled honeycomb lattices of zigzag open-end nanotubes.

can be found in zigzag and armchair carbon nanotubes, where the chiral angles
are equal to 30◦ and 0◦ respectively [22].

3.1. Zigzag-carbon nanotubes

We cut a rectangular section O AB ′B from the hexagonal lattice in the
plane. The zigzag open-end nanotube TZ (p, q) is obtained by rolling the rect-
angular section O AB ′B shown in figure 6 so that segments O B and AB ′ are
glued, where p denotes the number of layers parallel to O A and q the number
of hexagons on each layer. For example, the rectangular sections in figure 6 (left)
and (right) are rolled into zigzag open-end nanotubes TZ (11, 6) and TZ (10, 6)
according to odd and even number p of layers.

Let B1 be a half of a F36 illustrated in figure 7 (left). Then B1 as a cap is
added to each end of TZ (p, 6) to obtain a zigzag nanotube NZ (p, 6) for any non-
negative integers p: along their boundaries identify the 3 (resp. 2)-degree vertices
of B1 with the 2 (resp. 3)-degree vertices on an end of a tubule TZ (p, 6). Figure 7
illustrates such a generation procedure of a zigzag nanotube NZ (3, 6): for conve-
nience, a tube TZ (3, 6) is deformed to the plane, two copies of B1 are added to
faces f1 and f2 of TZ (3, 6) along their boundaries.
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Figure 7. A generation of zigzag carbon nanotubes with sextet patterns.

Figure 8. Zigzag nanotubes NZ (0, 6) and NZ (2, 6) with Clar formulas.

Any zigzag nanotube NZ (p, 6) is a fullerene graph Fn and n = 36 + 12p
by a routine computation. We now calculate their Clar numbers. We can see
that the zigzag tubule TZ (p, 6) with cycles within some hexagons in figure 6
and both caps B1 with cycles and double bonds in figure 7 are combined into
a zigzag nanotube NZ (p, 6) with a sextet pattern, which has 2p + 4 aromatic
sextets. On the other hand, this number is just the upper bound of the Clar num-
ber in theorem 1. Hence for any non-negative integer p the NZ (p, 6) achieve the
upper bound. Further, the sextet pattern constructed as above is a Clar formula
of NZ (p, 6) and c(NZ (p, 6)) = 2p + 4. In particular, zigzag nanotubes NZ (0, 6)
and NZ (2, 6) are F36 and F60 respectively, which together with Clar formulas are
illustrated in figure 8.

3.2. Armchair carbon nanotubes

The armchair open-end nanotube TA(p, q) (resp. T ′
A(p, q)) is obtained by

rolling the rectangular section O AB ′B shown in figure 9 (left) (resp. (right)) so
that segments O B and AB ′ are glued, where q denotes the number of layers par-
allel to the axis direction or to O B. For TA(p, q), p is the number of hexagons
on each layer; For T ′

A(p, q), p is the number of hexagons on each short layer,
whereas all longer layers have p + 1 hexagons. For example, the rectangular sec-
tion in figure 9 (left) and (right) are rolled into armchair open-end nanotube
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Figure 9. The unrolled honeycomb lattice of armchair open-end nanotubes.

Figure 10. A generation of armchair nanotubes NA(3k, 12) with Clar formulas.

TA(6, 12) and T ′
A(4, 12); other examples are TA(3, 12) in figure 10 (middle) and

T ′
A(1, 12) in figure 11 (middle).

As in the above subsection to each end of a tubule TA(p, 12) a cap B2 (see
figure 10 (left)) is added to obtain an armchair nanotube NA(p, 12) for any non-
negative integers p: along their boundaries identify the 3 (resp. 2)-degree vertices
of B2 with the 2 (resp. 3)-degree vertices on an end of TA(p, 12). Figure 10 illus-
trates such a generation procedure of an armchair nanotube NA(3, 12), which is
a fullerene F120.

Any armchair nanotube NA(p, 12)(p � 1) is a fullerene graph Fn with n =
48 + 24p vertices. If p = 3k, k is any positive integer, the set of hexagons with
cycles from a tubule TA(3k, 12) in figure 9 (left) and both caps B2 in figure 10
forms a sextet pattern of NA(3k, 12), which is a Clar formula by theorem 1 since
it misses exactly 12 vertices. Hence any armchair nanotube NA(3k, 12) achieve
the upper bound in theorem 1 and c(NA(3k, 12)) = 12k + 6. For example,
NA(3, 12) is a fullerene graph F120, which together with a Clar formula is illus-
trated in figure 10 (right).

In an analogous manner an armchair tubule T ′
A(p, 12) is added double caps

B2 to get an armchair nanotube N ′
A(p, 12) (see figure 11), which is a fuller-

ene graph Fn with n = 60 + 24p. For any non-negative integer k, a Clar for-
mula of N ′

A(3k + 1, 12) missing exactly 12 vertices can be constructed. Hence all
armchair nanotubes N ′

A(3k + 1, 12) achieve the upper bound in theorem 1 and
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Figure 11. Generation of armchair nanotubes N ′
A(3k + 1, 12) with Clar formulas.

c(N ′
A(3k + 1, 12)) = 12 + 12k. For example, the construction of an armchair

nanotube N ′
A(1, 12) (F84) with a Clar formula is illustrated in figure 11.
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